
Chapter 7

Ordinary Differential Equations

Theory

7.1 Ordinary Differential Equations Theory

In this section we will use some abstract results of metric spaces presented

in the previous sections. Particularly, we want to study the existence

and uniqueness of solutions to ordinary differential equations (ODE). For

[a, b] ⊂ R, let y : [a, b] −→ RN be a function, the form

y′(t) = F (t, y(t)) (7.1)

represent an ODE, where F : [a, b]×RN −→ RN is some continuous func-

tion. So we might think of y as the trajectory of a particle inN−dimensional

space, the ODE then specifies the velocity of the particle at a given time,

which is allowed to depend on either or both of the current time and the

current position of the particle. In the same manner one can define higher-

order ODE by

y(m)(t) = F (t, y(t), · · · , y(m−1)(t)), (7.2)

for y : [a, b] −→ RN , which can be reduced to system of first order ODE.

Lemma 7.1.1. Given a continuous function F : [a, b] × RN −→ RN ,
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y0 ∈ RN and y : [a, b] −→ RN , the following are equivalent:

1. y is continuously differentiable (C1) and is a solution to the initial

value problem

y′(t) = F (t, y(t)), t ∈ [a, b]; y(a) = y0. (7.3)

2. y is continuous, and for each t ∈ [a, b] we have

y(t) = y0 +

∫ t

a

F (s, y(s))ds. (7.4)

Proof. Assuming (1) we have (by the fundamental theorem of calculus)

y(t)− y(a) = y(t)− y0 =

∫ t

a

y′(s)ds =

∫ t

a

F (s, y(s))ds. (7.5)

Conversely, assuming (2), we obviously have y(a) = y0 and for h 6= 0 we

have
y(t+ h)− y(t)

h
=

1

h

∫ t+h

t

F (s, y(s))ds (7.6)

the right hand side tends to F (t, y(t)) as h −→ 0. So we deduce that

the derivative y′(t) exists and it is equal to F (t, y(t)). Since F (t, y(t)) is

continuous function of t thus y is continuously differentiable.

Remark 7.1.2. Recall that (C([a, b];R), d∞) and (C([a, b];RN), d∞) are com-

plete metric spaces. Indeed from the definition of complete metric space, so

we have that R and RN are complete (with the usual distance) in addition

(C([a, b];R), d∞) and (C([a, b];RN), d∞) are complete metric spaces.

Theorem 7.1.3 (Contractive Mapping Principle). Let (X, d) be a complete

metric space and let φ : X −→ X be a function satisfying the following

property: For some r < 1, we have, for each x, y ∈ X

d(φ(x), φ(y)) ≤ rd(x, y). (7.7)
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Then there is one and only one point x0 ∈ X such that

φ(x0) = x0 (7.8)

Proof. We know that there is no more than one fixed point of φ, since if

φ(x0) = x0 and φ(x1) = x1 then our assumption shows

d(φ(x1), φ(x0)) = d(x1, x0) ≤ rd(x1, x0). (7.9)

Since r < 1 then x1 = x0 (Otherwise r ≥ 1).

So, we only have to prove the existence of x0. Let x1 ∈ X be any point,

for n ≥ 1 define xn+1 = φ(xn). Then the sequence xn −→ x0 as n −→∞.

Indeed, Let A = d(x1, x2), so for any n we have

d(xn+1, xn+2) = d(φ(xn), φ(xn+1))

≤ rd(xn, xn+1)

= rd(φ(xn−1), φ(xn))

≤ r2d(xn−1, xn)
...

≤ rnA.

So by the triangle inequality, we find

d(xn, xn+k) ≤
k−1∑
j=0

d(xn+j, xn+j+1) ≤
k−1∑
j=0

Arn−1+j = Arn−1
k−1∑
j=0

rj ≤ Arn−1

1− r

Hence, if n,m > N , we get

d(xn, xm) ≤ ArN

1− r
−→ 0 as N −→∞. (7.10)

this shows that {xn}n∈N is a Cauchy sequence and it is converges to some

x0 ∈ X i.e. xn −→ x0 (since (X, d) is complete). The assumption on φ
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implies that φ is continuous (give ε > 0 and take δ = aeps). So,

φ(x0) = lim
n−→∞

φ(xn) = lim
n−→∞

(xn+1) = x0

Definition 7.1.4. F : [a, b]×RN −→ R is called uniformly Lipschitz with

Lipschitz constant M if, for every t ∈ R and x, y ∈ RN we have

|F (t, x)− F (t, y)| ≤M |x− y|.

Proposition 7.1.5. Suppose that F : [a, b]×RN −→ RN is continuous and

uniformly Lipschitz with Lipschitz constant M and y0 ∈ RN , and define

Φ : C([a, b], RN) −→ C([a, b], RN) by

(Φ(y))(t) = y0 +

t∫
a

F (s, y(s))ds (7.11)

Then, for each y, z ∈ C([a, b], RN) we have

d(Φ(y),Φ(z)) ≤M(b− a)d(y, z). (7.12)

Proof. By definition, we see that

d(Φ(y),Φ(z)) = max
t∈[a,b]

∣∣∣∣∣∣
t∫

a

(F (s, y(s))− F (s, z(s)))ds

∣∣∣∣∣∣
So by the uniform Lipschitz assumption, we get

d(Φ(y),Φ(z)) ≤ max
t∈[a,b]

t∫
a

M |y(s)−z(s)|ds ≤ max
t∈[a,b]

t∫
a

Md(f, g)ds ≤M(b−a)d(f, g)

(7.13)
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Corollary 7.1.6. Let F : [a, b]×RN −→ RN be continuous and uniformly

Lipschitz with Lipschitz constant M satisfying b− a < 1/M . Then for any

y0 ∈ RN , the initial value problem

y0(t) = F (t, y(t)) y(a) = y0 (7.14)

has exactly one solution.

Proof. Proposition 7.1.5 gives d(Φ(y),Φ(z)) ≤ M(b − a)d(y, z), and our

assumption is that M(b − a) < 1. Hence we can apply the contrac-

tive mapping principle to Φ, which shows that there is one and only

one y ∈ C([a, b], RN) such that Φ(y) = y. But we observed earlier that

y ∈ C([a, b], RN) satisfies Φ(y) = y precisely when y is a solution to the

initial value problem.

Theorem 7.1.7. Suppose that F : [a, b] × RN −→ RN is continuous and

uniformly Lipschitz. Then there is one and only one solution y : [a, b] −→
RN to the initial value problem

y0(t) = F (t, y(t)), y(a) = y0. (7.15)
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